Kratki wentylacyjne

Projektowanie

Nawiewniki sufitowe i kratki wentylacyjne stanowią jeden z najważniejszych elementów instalacji wentylacyjnych i klimatyzacyjnych. Bez wzglẹdu na zastosowany system mają decydujący wpływ na rozkład prędkości i temperatury powietrza, i co za tym idzie, na komfort osób przebywających w pomieszczeniu. Podstawowym zadaniem tych urządzeń jest dostarczenie wymaganego strumienia powietrza, przy zachowaniu odpowiednich jego parametrów w strefie przebywania ludzi oraz niskiego poziomu hałasu w pomieszczeniu.

Dobór nawiewników i kratek nawiewnych sprowadza siẹ do założenia koncepcji rozprowadzenia powietrza w pomieszczeniu, określenia odpowiedniej ilości urzạdzeń oraz ich parametrów pracy takich jak: strumień jednostkowy (przypadajaçy na jeden nawiewnik), zasiẹg strugi, strata ciśnienia, hałas.

Rozprowadzenie powietrza i dobór nawiewników to jedno z najtrudniejszych zadań w całej technice wentylacyjnej, którego prawidłowe rozwiązanie wymaga dużego doświadczenia. Nie zawsze można też ustalić dokładne i ścisłe zasady dotyczące wyboru typu nawiewnika.

Poniżej podano kilka najistotniejszych wskazówek dotyczạcych projektowania systemu dystrybucji powietrza w pomieszczeniu:

- Strumienie powietrza w pomieszczeniu można prowadzić z góry w dót, z dołu w górẹ jak również z góry w góré.
- W przypadku projektowania nawiewników stropowych i górnych kratek nawiewnych, gdy wystepuje różnica temperatur pomiẹdzy powietrzem nawiewanym a powietrzem w pomieszczeniu, należy uwzglẹdnić unoszenie i opadanie strugi spowodowane siłami ciẹżkości powstałymi na skutek różnic gęstości powietrza. W przypadku, gdy instalacja przeznaczona jest do klimatyzacji pomieszczenia w okresie letnim oraz pokrywania strat ciepła w sezonie grzewczym przy różnicy temperatur $\Delta T>5[K]$ trudno jest uniknạć "jeziora zimnego powietrza przy podłodze" i jednocześnie nie przekroczyć dopuszczalnych prẹdkości powietrza w strefie przebywania ludzi. Częściowym rozwiązaniem tego problemu może być zastosowanie nawiewników o dużej indukcji. Należy siẹ jednak pogodzić z tym, że wystạpiạ przejściowo nadmierne prẹdkości powietrza na wysokości głowy człowieka. Najlepsze efekty uzyskuje siẹ przez zastosowanie nawiewników z możliwością regulacji.
- Kratki i nawiewniki nie wyposażone w kierownice powietrza można stosować jako nawiewniki jedynie warunkowo, najczęściej sa, to otwory wywiewne.
- Należy unikać niekontrolowanego tworzenia siẹ efektu Coandy.
- Projektujạc nawiew dolny należy unikać dużych prẹdkości powietrza. Prẹdkości wiẹksze niż 0,5 m/s, w zależności od odległości od nawiewnika mogą wywołać odczucie przeciągu.
- W przypadku nawiewników podłogowych należy brać pod uwage możliwość gromadzenia siẹ w nich kurzu, który nastepnie porywany jest strumieniem powietrza i nawiewany do pomieszczenia.
- Nawiewniki w instalacji niskociśnieniowej powinny posiadać możliwość regulacji w celu zrównoważenia sieci a tym samym osiągniẹcia odpowiedniego rozdziału powietrza.
- Usytuowanie kratek wywiewnych w przypadku pomieszczeń gdzie pali siẹ tytoń powinno mieć miejsce u góry.
- W pomieszczeniach gdzie wydzielają się zanieczyszczenia otwory wywiewne powinny być usytuowane możliwie blisko źródła zanieczyszczeń.
- W przypadku doboru nawiewników, kratek nawiewnych jak i wywiewnych należy zawsze uwzglẹdnić prẹdkość wypływu powietrza i związanạ z niạ emisjẹ hałasu.

Kratki wentylacyjne - Projektowanie

Strefa przebywania ludzi

Jako strefẹ przebywania ludzi przyjmuje siẹ przestrzeń pomieszczenia znajdująca, siẹ 1,8 m ponad podłogą.

Rys.a)

Rys. b)

Strefa przebywania ludzi w przypadku nawiewu al stropowego i b) ściennego

Strumień jednostkowy

Wymagany strumień objętościowy powietrza wypływający z nawiewnika [m3/h]

Zasieg strugi

Odległość L [m] pomiędzy środkiem nawiewnika a punktem, w którym średnia prẹdkość ruchu powietrza spada do pewnej założonej wartości. W przypadku klimatyzacji komfortu prẹdkość ta nie powinna przekraczać 0,20$0,30[\mathrm{~m} / \mathrm{s}]$. Na zasiẹg strugi istotny wptyw ma temperatura powietrza nawiewanego i związane z nią zjawisko opadania lub unoszenia sie, strugi powietrza.

Rys. Zasiẹg poziomej strugi powietrza wypływajạcej z kratki nawiewnej ściennej

Strata ciśnienia

Różnica pomiẹdzy ciśnieniem w kanale przed nawiewnikiem a ciśnieniem powietrza za nawiewnikiem (w pomieszczeniu). Dane w katalogu określają całkowitạ stratẹ ciśnienia dla poszczególnych nawiewników i kratek nawiewnych.

Poziom mocy akustycznej

Dane zamieszczone w katalogu określają poziom mocy aksutycznej w dB(A) w odniesieniu do danej kratki lub nawiewnika.

Kratki nawiewne

Ten typ urządzeń nawiewnych tworzy w pomieszczeniu poziomo wnikające strumienie. W przypadku nawiewania strumienia o tej samej temperaturze, co powietrze w pomieszczeniu, sity grawitacji nie wpływaja na odchylenie strumienia. Mówimy wtedy o strumieniach izotermicznych. W przypadku nawiewania do pomieszczenia strumienia poziomego o temperaturze różnej od temperatury powietrza wewnẹtrznego nastẹpuje zmniejszenie zasiẹgu strugi oraz jej odchylenie w kierunku zależnym od różnicy temperatur (w górẹ strumienie ciepłe, w dót - strumienie zimne).

Nawiewniki sufitowe

Urządzenia te rozprowadzaja powietrze w kierunku mniej lub bardziej poziomym w stosunku do powierzchni, w których są zainstalowane. Innym rozwiązaniem sạ nawiewniki wirowe. Poprzez zawirowanie strugi osiąga siẹ dużą indukcję co powoduje szybkie wyrównywanie temperatur i spadek prędkości strugi. Rozwiązanie to pozwala na stosowanie wiẹkszych różnic temperatur nawiewu. W przypadku stosowania tego samego nawiewnika stropowego do nawiewu powietrza w okresie letnim (klimatyzacja) oraz zimowym (ogrzewanie) wystẹpuje niebezpieczeństwo powstawania warstwowego rozkładu temperatur w pomieszczeniu. Jeżeli różnica temperatur pomiędzy powietrzem nawiewanym a powietrzem w pomieszczeniu przekracza 5 [K], nawet w przypadku nawiewników wirowych trudno stosując to samo urządzenie nawiewne dotrzeć do strefy przebywania ludzi i jednocześnie uniknạć przeciạgów przy chłodzeniu w okresie letnim. W tym przypadku z powodzeniem stosuje siẹ nawiewniki wirowe o zmiennej geometrii strumienia powietrza nawiewanego. Konstrukcja tych nawiewników umożliwia ptynnạ regulacjẹ położenia kierownic przy pomocy sitownika lub ręczną dźwigniạ. Możliwy jest nawiew w postaci skoncentrowanego strumienia powietrza w dół w przypadku ogrzewania oraz odpowiednie rozprowadzenie powietrza w przypadku chłodzenia, w zależności od wariantu pracy instalacji.

Efekt Coandy

Jeżeli strumień jest nawiewany nie bezpośrednio pod sufitem, lecz w pewnej odległości h nie wiẹkszej niż 30-50 razy grubość strumienia a, to z powodu indukowanego zawirowania oraz jednostronnie wyższego podciśnienia strumień przylega do sufitu. Podobnie zachowuje siẹ strumień wypływający wzglẹdem powierzchni pod kạtem α mniejszym lub równym 45°. Przy pojedynczych strumieniach lub szczelinach krótkich, strumień nie "przykleja siẹ" do powierzchni nawet przy mniejszych wartościach kạta α. Powinno siẹ wiẹc raczej stosować krótkie pojedyncze strumienie niż ciạgłe i długie. Charakteryzują siẹ one wiekszạ indukcjạ powietrza, dziẹki temu szybciej spada ich prẹdkość a wyrównanie temperatury nastẹpuje w mniejszej odleglości od wylotu. Omawiane zjawisko wystẹpuje również w przypadku dwóch sąsiadujạcych strumieni powietrza, jeżeli ich odległość jest odpowiednio bliska. Wytwarzają siẹ wtedy dwa wiry. Czasami zjawisko to bywa nazywane efektem powierzchni granicznej wirów. Generalnie należy unikać efektu Coandy, gdyż może się zdarzyć, że tworzạce siẹ na skutek jego wystẹpowania strumienie (szczególnie izotermiczne) podążajạ wzdłuż sufitu lub podłogi (zależnie od chwilowych prądów termicznych w pomieszczeniu) wywołujạ w pomieszczeniu zjawisko przeciạgów. Zdarzaja sie jednak przypadki, w których można wykorzystać świadomie efekt Coandy w celu zwiẹkszenia zasiẹgu strumienia. Jest to szczególnie przydatne w przypadku nawiewania strumieni o temperaturze mniejszej od temperatury powietrza w pomieszczeniu.

